Biotechnology

Nanosystems and Targeted Antitumor Strategies

Nanosystems

Gene Delivery

Drug Delivery

Targeted Cancer Therapy


Research lines

Development and characterization of novel inorganic-, lipid- and polymer-based nanosystems that have the ability to specifically and efficiently deliver different therapeutic agents, such as genetic material and drugs, into target cells

Generations of combined multitarget antitumor strategies, acting in several signaling pathways of carcinogenesis

assessment of the in vitro and in vivo antitumor activity of the combined and individual strategies

and clarification of the underlying tumor cell death mechanisms

Overview

Cancer remains a major health problem, being a leading cause of death worldwide. Despite the ongoing efforts, current treatment options are largely insufficient, being associated to multiple limitations. This fact highlight the urgent need for the development of novel therapeutic interventions, just like those involving the combination of gene therapy and chemotherapy.
Nanotechnology-based systems could greatly contribute to the success of these combined antitumor strategies, since nanosystems, namely targeted-nanosystems, have the capacity to specifically and efficiently deliver the therapeutic molecules into target cells.

The main goal of our group is to generate novel delivery nanosystems that have the ability to mediate new combined multi-target antitumor strategies, such as those involving genetic material and drugs, in order to obtain a higher therapeutic efficacy than that achieved with current treatment options.

Our principal objectives are:

  • To develop and widely characterize different delivery nanosystems (in terms of: mean diameter; surface charge; morphology; genetic material complexation and protection; drug loading and release; biocompatibility; interaction and release into cancer cells).
  • To generate and evaluate multitarget antitumor approaches (in terms of: cell viability; proliferation; migration; apoptosis and necrosis levels; cell cycle; mRNA and protein levels of the molecular targets; tumor size and histology; animal survival) acting in several signaling pathways of carcinogenesis.
  • To demonstrate that the generated nanosystems and the innovative antitumor strategies could result in a higher therapeutic activity and less side effects than conventional therapeutic strategies in different cancer diseases.

We use cookies to improve your visit to our website.